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ON FIRST APPROXIMATION STABILITY RELATIVE TO A PART OF VARIABLES* 

WUTUAN 

Certain theorems on stability in the first approximation relative to a part of vari- 
ables which generalize the Liapunov and Massera theorems, are proved. 

1. The case of regular linear approximation system. lo. We consider the non- 
linear system 

dx/dt = M (t) x + F (t, x), x = co1 (x,, - a ., +) 
(1.1) 

F (t, x) = co1 (P, (t, x), . ..,F,,(t,z)), F(t,O)=O 

M (t) E c It,, w), S"PtIi M (QII< 00 

where M(t) is the lower triangular matrix of order II and II.11 is the Euclidean norm. 
We shall investigate this system stability with respect to variables x~,...,x,,, (1 <m<rz), 

using the notation 

y = co1 (y1, f . .) ym), yk = Xk (k = 1, . * *, 4 
z = co1 (21, . . .t $1, &=i=k+m @=I,. 

f (t, y, z) = co1 (Fl (t, 4, . . ., F, (6 $1) 

g (t, y,z) = co1 (F,,, (t, 4, . . ., F, (4 2)) 

.,p=n-m) 

where A(t) and B(t) are lower triagular matrices of order 
System (1.1) can now be represented in the form 

dyldt = A (0 II + f 0, Y. 2) 

m x m and p x p, respectively. 

(1.2) 

Let us assume that 
cf.&t = C (8) y + B (t) z + g (G 8, zf 

af the vector function F(t,x) is continuous and satisfies the conditions of uniqueness 
of solution in the region 

t > t,, II YII < H (H > 01, 0 G II zll -c - 
b) solutions of system (1.1) are a-continuable which means that any solution z(t) is 

determined for all t> to for which IIYI[<H. 
We denote by z = x(t; &,x0) the solution of system (1.1) determined by the initial condi- 

tion x (to; t,, se) = 20. 
Together with (1.2) we shall consider the linear system 

dy*/dt = A (t) y* (1.3) 

Theorem 1. If 
1) the linear system (1.3) is Liapunov regular, 
2) all characteristic indices of system (1.3) are negative, 

a,gc,<...<sm<O and 

3) the vector function f satisfies the inequality 

II f (4 y, 4 II < II 0) II Y llq (4 > 1) (1.4) 

in which q(t) is a continuous positive function in [to, 00) , and x [g (t)l = 0 , then the 
trivial solution 5~ 0 of system (1.1) is exponentially y-stable as t-+00. 

Proof. Let a,<-_y<O. We apply to system (1.1) the transform 

5 = ,,v(t-G (1.5) 

and obtain 

dwldt = N (t) w + G (t, w) (1.6) 

N (t) = $2 + M(t), G (t, w) = &*-*Q)F (t, we-V(f-fo)) 

As the result of transformation (l-5), system (1.2) assumes the form 
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duldt = A, (t) u + fl (t, u, v) 

dvldt = C, (t) u + B, (t) v + g, (t, u, v) 

u = @V-W, v = j@J(i-to) 

U=CO1(U1,...,Um); Uf=Wk(k=l,...,m) 

v = co1 (VI, . ., v,); vk = wk+,,, (k = 1, . . .( p) 

A, = yE + A, B, = yE + B, C1 = C 

(1.7) 

Obviously A,(t) and B,(t) are also lower triangular matrices and 
(1-S) 

fr (t, u, v) = eVU-fo)f (t, WW-W, wY(t-W) 

g, (t, u, v) = eY(l-tdg (t, ue-Y(t-lo), v@Cf-W) 

Moreover, w (to) = z ($0) , and G(~,w) satisfies conditions a) and b), i.e. transform (1.5) pre- 
serves the existence of the unique solution and, also, the z-continuation of solutions. 

System 
du*fdt = A, (t) u* (1.9) 

is obviously regular. 
Let H(t)(H(t,) = E) be the fundamental lower triangular matrix of the system 

dw*ldt = N(t) w* (1.10) 

Applying the method of variation of constants, we replace the nonlinear differential equation 
by the equivalent integral equation 

w(t)=H(t)w(to)+ i K(t,z)G(?w(z))dr 
(1.11) 

K (t, z) = H (t) H-h, w (to) = ~01 (u (to), v (to)) = 5 (to) 

Since H(t) is a lower triangular matrix, K (t, r) is of the same form. 
In conformity with the local theorem of existence of solutions there exists for the pair 

(to, %), where 11 uOl)< H , the solution w(t) of the differential equation (1.6), which satisf- 
ies the initial condition w(to)= s(to), and is determinate in some interval to Q t < t, + 1, 
and 11 u (t) 11 < H for t E [t, to + 1). 

Let H(t) and K(t,r) be of the form 

HI(~) 0 
H(t)= Ho(t) Ho(t) ’ I I/ K(t97)= ii &(W 0 

&(t,7) Kz(b7) u 

where HI, K, and H,, KS are lower triangular matrices of order m X m and PXPt respect- 
ively. Then, in conformity with (1.111, the vector function u(t) satisfies the integral eq- 
uation 

u(t)=Hl(t)u(tcl)+ SKl(t,r)fl(r,Ir(~).v(7))d7 (1.12) 
!0 

which yields the estimate 

(1 u @)I( Q II H,(t) II II u(to) II + j IIKI 6 7) II Ilk (7. u(7)* v (7) Ild~ (1.13) 

Since all characteristic indices flk = ck +Y of the linear System (1.9) are negative, there 

exists a number c1 >I such that 

II HI 0) II -C cl for to< t< O" (1.14) 

Moreover, on the strength of estimate of the Cauchy matrix or the regular system with negative 
characteristic exponents /2/ we have 

II K, (t, r) II < czee('-fo) for to < r < t < 00 (1.15) 

On the basis of formulas (1.4) and (1.8) we have 

11 f1 (t, u, v) (1 = e-Y(+2a) II f (t, ue-y(*-f*), ve++*o)) II < cg exp {I& - (q - 1) VI (t - to)) (I U Ilq (1.16) 

where .!.s is a fairly large positive number. 
Substituting (1.14)- (1.16) into (1.13) we obtain the estimate 

II 24 (t) II <Cl II 11 (to) II + s ctc3exp (12~ - (P - 1) vl(r -~o)~ll~(~)ll*d~, to<t<to+z 
f0 

(1.17) 
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We select the positive number e so small as to satisfy the inequality 

6=(q-_)y-2e>O 
Then applying to the inequality 

II u ($)I\ < CIII 11 (to) II-i- s W+-'d II u (9 IIQdT (co = ws) 
:o 

the Bihari lemma /2/, we concluded that 

(1.18) 

(1.19) 

Q (t) = (q - 1) cf’ 11 u1 (to) [(q-l (~,e-~(- ok 
t* 

if only 
Q 0) < 1 (1.20) 

Since 

then, provided that 11 u (to)11 = (Jy (t,)(( is fairly small, it is always possible to assume that in- 
equality (1.20) is satisfied. It follows from (1.19) that when I[u(b,)II is fairly small, then 
for any tE [to,&, -!- 8) u(t) is an inner point of region {t,< t<m,Ift6ff <H/Z(H) and, con- 
sequently, the solution w(t) is infinitely u-continuable to the right. The solution w(t) 
is by virtue of assumption b) infinitely continuable to the right. Thus for to<t<m we 
have the inequality 

II u 0) II < L I! Y, II -=z Hr’2 

where L is some constant dependent on to. 
Reverting to the variable z, with t,,<t< 30 and /ly(t,,)lJ< A( H (H fairly small)we 

have 
II y (t) II < L II Y (to)Ile-v(r-r~) <L (II Y (&J II -I- II2 (to) Il)~-~-‘p(t+’ 

i.e. the trivial solution SGO of the nonlinear system (1.1) is exponentially y-stable as 
t+oo. The theorem is proved. 

20. Let us consider a nonlinear system of the more general form 

d&t = M (t) z + F (6 I); M 0) E c [to, oo), sum II J!f w II < 00 (1.21) 

in which M(t) is an (n x n)matrix, the vector function F(t,z.f conforms to assumptions a) 
and b), and F (t,O)z 0, We use here in addition to the notation introduced above the follow- 
ing: 

P@= co1 (s,, . . .,Zk) (1 <k d n) 

xk. = I#), . . ., s(Q], X,k = Id"') , . * ., 2(")1 

where GfXk) is the Gram determinant camposed of vectors z('f,...,r@). 

Theorem 2. Let 
1) for the linear approximation system 

l&?/E& = M(t) 5* (1.22) 

of system (1.21) exist a normal basis x* = It*'" (t), . . ., z*tfQ (t)] such that 

int G (x*1 
t G G-,*> G c-q,, =p>o (1.23) 

2) the linear system (1.22) be Liapunov regular, 
3) the characteristic indices of vectors ~*(')(t),...,s*(~)(t) be negative 

x [zf@) (t) 1 = a* < 0 (i = 1, . . .I n) (1.24) 

4) for the vector function F(t,z) the inequality 

II f (t, Y, 2) II < $ w II Y IF (1.25) 

where q(t) is a continuous positive function in B[t,,co) be satisfied, and 

x IS (t)f = 0 (1.26) 

The trivial solution x=0 of system (1.21) is, then, exponentially Y-stable as t-tw. 

Proof. Condition (1.23) implies the existence of the Liapunov transform I* = u(t)!* 
which converts system (1.22) into a partitioned lower triangular system (see /l/j 
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dE*ldt = Q (t) 5* (1.27) 

with this transformation the nonlinear system (1.21) assumes the form 

dYdt = Q (t) 5 + G (k E) 
Q (t) = U-’ (t) M (t) U (t) - U-l(t) U’ (t) 

G (t, 5) = U-’ (t) F (t, U (t) 5) 

(1.28) 

or 
dqldt = A (4 q + h (t, 77, 5) 
dYdt = B (t) 5 + 4 (6 71, 5) 

(1.29) 

where A(t) and B(t) are lower triangular matrices of order m and p = n -rn, respectively, 
n is an m-dimensional vector, 5 is a p-dimensional vector, E = co1 (n, f), and G (t, 5) = 
co1 (h (t, n, 5)V h, 071, 5)). 

Since system (1.22) is regular, system (1.27) must also be regular. By the criterion of 
regularity of a triangular system /2/ the linear system 

is regular. 
dq*ldt = A (t) q* 

Since the Liapunov transform does not alter the characteristic indices, hence 

x Iq*(Ql = x It*(i)1 = x [s*(')] = ai < 0 (i = 1, . . .,m) 

Taking into consideration the boundedness of matrices U(t) and U-l(t), from formulas (1.25) 
and (1.291 we obtain 

IIh (t, 11, 5) II < $1 WI1 rl I? k > 1) 

where Ill(t) is a continuous function positive in [t,,co) which satisfies equality (1.26). It 
is, moreover, evident that G(t,E) conforms to assumptions of the a) and b) type. 

All conditions of Theorem 1 have been, thus, satisfied for system (1.29) and, consequent- 
ly, the trivial solution E, E 0 of that system is exponentially I-stable as t+m, i.e. 

II 11 0) II < L (II q (to) II + II 5 (to) II) d’-‘d 
where L is a constant, the quantity IIn(t,)II fairly small, and CL~<--~<O (i=l,...,m). 

Since z = U(t)E , hence 

11 y (t) II g 11 u (4 II II 9 (t) /I G b (il Y PO) II + II 2 (t0) II) d+ld 
which means that the solution SO of system (1.21) is exponentially y-stable as t-t 00. 
The theorem is proved. 

2. The case of the irregular system of linear approximations. Let us consid- 
er in this case the problem of first approximation stability relative to a part of variables. 

lo. Consider the differential system 

dxldt = M (t) x + F (t, x) (2.1) 

M (t) E c [to, w), supt II M (4 II -=E 00 

where M(t) is the lower triangular matrix, F(t,x) conforms to assumptions a) and b) from 
Sect.1, and F(t, 0) G 0. 

System (2.1) may be written in the form 

Theorem 3. Let 
1) the inequality 

dyldt = A (t) y + f (t, Y, 2) 
dzldt = C (t) y + B (t) z + g (t, Y, z) 

where q(t) is a continuous positive function, be satisfied, and x Ill, @)I = 8 , 
2) the characteristic indices of the linear function 

dy*ldt = A (t) y* 

satisfy the condition 

al<... <a,=a<- *GO 

where X, a coefficient of the irregular system (2.4), is defined by 

xz ~ak-limffTrA(t~)dt~ 
k=1 -KG ,* 

(2.2) 

(2.3) 

(2.4) 
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The trivial solution sz0 of the nonlinear system (1.1) (or of system (2.2)) is asympt- 
otically y -stable as t+oo. 

Proof. Let y be a positive number such that 

x/(q - 1) <Y < --a (2.5) 

We set 
D = diag (a, + y, . . ., a, + y, I, . . 1) = diag (D’, 8) 

Let X (t) = [zjk (t)]," be a normalized fundamental lower triangular matrix of (X(&J= E) 
of the linear system 

dx*ldt = M (t) x+ (2.6) 

It is now obvious that matrix Y(t) = [yjk (t)lmm in which y,r (t) = zjk (t) for j, k = 1, . . ., m is 
the fundamental matrix of system (2.4) and Y(tJ= E. 

We apply to system (2.1) the transform 

s = X (t)e-n'w, w = col(u, u) 

where U is an m-dimensional vector and v an (n -m) -dimensional vector, and obtain 

2 =X (t)e-n'$ +X’(t)e-D‘w- X(t)e-DfDw=M(t)X(t)eD*w+F(t,X(t)e-D’w) 

from which follows that 

dw/dt = Dw + eD*X-’ (t) F (t, X (t)eeDfw) (2.7) 

Since X(t) is a lower triangular matrix, X-l(t) and eD'X-l(t) are also lower triangular 
matrices. Furthermore, it follows from (2.7) that 

du/dt = D’u + h (t, a, u) (2.8) 

h (t, u, v) = P, IeDLX-’ (t) F (t, X (t) e-Dtw)l 

It is known that 
Y-‘=&ljA~j(t)Ij, A(t)=detY(t) 

where A,,(t) is the cofactor of the determinant A(t). Using the Ostrogradskii- Liouville 
formulaandtaking into account the equality A(&,) = 1, we obtain 

A(t)=expjTrA(tddh 
f. 

Hence 

Y-l (t) =a Akj (t) exp [ - j Tr A (tl) dh] // 

~[eD’~Y-1(t)]=~~fAkj(t)exp[-$TrA(t)erpi-hTrl(tl]< 

from which 

(2.9) 

Since x IY (t) e-W < Cl I hence Y(t) e-u” + 0 as t-t 00. I 
Let ll~II<ffHJf- Then 

II Y II d II Y (4 edD” II II u II 6 H 

Let us evaluate the nonlinear term h(t,u,u) of system (2.8) with IlullQHIM. using 
inequality (2.3) we obtain 

,I/ h (t, u, u) 11 < II P, (eD1 X-l (t) F (t, X (t) eeD*w)) Ild 
11 eD”Ybl (t) II I q~ (t) I II Y (t) e-D’fII” II u II* = 9 (t) II u II’ 

cp (t) = II eD”Y-’ (t) II l Q (t) I II Y (t) ebDL II’ 

By virtue of inequality (2.9) and properties of characteristic indices the following estimate 
is valid: 

x IT (t)] = x [II eD’LY-l (t) II I$ (t) I II Y (t) @VI <x + y + 0 - 4;y = x - (q - l)y 
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On the basis of inequality (2.5) we have 

x [(P @)I < U 

hence 

II h (k k u) II d c II u It*, Q > 1 

(Ll d t < aJ 1 II u,II G H / M) 

Thus by virtue of the Liapunov theorem on the stability of a quasilinear system /2/ the triv- 
ial solution UE 0 of system (2.8) is asymptotically stable as t+co. This means that the 
solution WE 0 ok system (2.7) is asymptotically u-stable as t-t 00. From this on the 
basis of formulas y = Y(t) exp(--D't)u and x [Y(t) exp (-D't)]<O follows that the trivial 
solution of system (1.1) is asymptotically y-stable as t-t co. Theorem 3 is proved. 

20 . Let US now consider a differential system of a more general form 

dx/dt = M (t)x + F (t, ix) 
where (M(t) is an (n X n) matrix. 

We shall prove for this general system a theorem similar to Theorem 3. 
First of all we shall prove two lemmas. 
Let us consider the linear homogeneous system of order n 

dx/dt = S (t) z, S (t) E C [to, m), supt (1 S (t) II < OQ 

assuming it to be irregular with 

(2.10) 

n 

%r= E ak-lim~fReTrS(tJdt~ 
k=, KG f. 

(2 .ll) 

as its coefficient of irregularity in which a, < a2 <...< a,, is the complete spectrum of 
system (2.10). 

By applying to system (2.10) the Liapunov transform i: = U (t)y we convert it to the form 

dyldt = Q (t) y (2.12) 

Q (t) = u-’ (t) s (t) u (t) - u-’ (t) u’ (t) 

We denote thecomplete spectrum of system (2.12) by a~'< US'< . . . da,,’ and its coefficient 
of irregularity by x'. 

Lemma 1. The Liapunov transform preserves the irregularity coefficient of a linear 
homogeneous system of the form (2.10), i.e. x=x'. 

Proof of this lemma follows directly from that the Liapunov transform retains the charact- 
eristic indices and value of the limit in formula (2.11). 

We call the number 

,(,)=k al,-limf ‘Re 

m 

s Iz 
.% (h) dt* 

k=1 riZG to izzl 

where si are diagonal elements of matrix S(t), the coefficient of m-partial irregular- 
ity of the linear system (2.10). 

Lemma 2. The coefficient of partial irregularity of a linear system is retained when 
the Liapunov transform z = IY(t)y is such that the matrix of transformation is of partition- 
ed diagonal form 

U (t) = diag (U,, U,-,) 

where U, and U,, are square matrices of order m and n-m , respectively. The proof 
of this lemma is obvious. 

Let us now consider the nonlinear system 

&/dt = M (t) z + F (t, z) (2.13) 

M (t) E C It,, m), sup, 1) M (t) II < 00 

where (M(t) is an kn x n)- matrix, F(t,z) conforms to assumptions a) and b), and F (t,O)rO. 
Using the notation introduced above we can write (2.13) as 

dyldt = A (t) y + B (t) 2 + f (t, Y, z) (2.14) 

dzldt = C (t) y + D (t) 2 + g (t, Y, z) 

Theorem 4. Let 
1) system (2.14) have a normal fundamental matrix of the partitioned diagonal form U (t) = 

diag (U,(t), U,, (t)) that satisfies the inequality 
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(2.15) 

2) the inequality 
II f (t, Y, 2) II < * W II III? (P > 1) 

where *J](t) is a continuous positive function, and ~19 (t)l = 0, be valid, and 
3) the characteristic indices of the system 

&*/dt = A (t)g* 
satisfy the condition 

where x is the coefficient of the m-partial irregularity. 
Then the trivial solution zs0 of the nonlinear system (2.13) (or (2.14)) is asymptot- 

ically y-stable as k+ M. 

Proof. Condition 1) of the theorem implies that the linear differential system 

&*/dt = M (t) z* 

can be transformed to a partitioned lower triangular system by applying the Liapunov trans- 
form Z* = U(t)&*, where U(t)= ding&, u-). 

Let the transformed system be of the form 

de*/dt = Q (t) E* 

where Q(t) is a partitioned lower triangular matrix. The nonlinear system (2.13) is then 
reduced to system 

dEldt=Q(t)&+G(t, 8, & = ~01 (q, C), Q (t) = diag (-4, (t), & (A), C (t9 El = ~1 (h (t, fl. El, h 0. rlv 0) (2.16) 
where rl is an m-dimensional vector and 6 is an (n--)-dimensional vector. 

On the basis of the Liapunov transform properties and of the lemma we obtain the equalit- 
ies X' = x, q' = q (i = i,. . ., m) 

where x is the irregularity coefficient and q' are the characteristic indices of the system 

dq*ldt = A, (t) ‘1’ 

From this x' 
a,'<...<a,'=a<--CO 

Since matrices U(t) and v-l(t) are bounded and h ft, ‘I, f) = &,,-I (t) f (t. U,,,-’ (t) ‘lr U,,_,,,-’ 0) 6) I 
by virtue of inequality (2.15) we have 

(1 h (t, q, 6) (1 < 91 w II rl IP (Q > 1) 
where $1(t) is a positive function for t E tr,, 00) , and x ['M (01 = 0. 

By virtue of Theorem 3 the trivial solution EzO of system (2.16) is asymptotically {- 
stable as t--rc0. 

This shows that the solution 2~0 of system (2.13) is asymptotically y-stable as teoc. 
The Theorem 4 is proved. 
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